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1 Overview

This report summarizes a project sponsored by the NASA Langley Research
Center through the Langley Grad-Aero Program under Grant No. NAG-1-1509.
The project was approved for the period May 6, 1993 - November 4, 1997. However,
due to reductions in NASA’s budget and limited funds for the Grad-Aero Program,
funding was halted in November 1994. A one-year no-cost extension was requested
so that the student could attend the ATAA 1995 Aerospace Sciences Meeting. Dur-
ing that period supplemental funding was made available to support the student
over the summer of 1995. The extended termination date for the NASA grant was
November 5, 1995. The project has been continued by supporting the student as a
Teaching Assistant within the School of Aeronautics and Astronautics. Although
funding for this project was terminated, NASA Langley has continued to provide
access to their computer facilities.

The objective of this project was to evaluate and develop subgrid-scale (SGS)
turbulence models for large eddy simulations (LES) of compressible flows. During
the first phase of the project results from LES using the dynamic SGS model
were compared to those of direct numerical simulations (DNS) of compressible
homogeneous turbulence. The findings were published in Ref. {1-3]. Ref. (3] is
included in this report as Attachment A.

It is becoming apparent within the LES community that numerical errors can
have a significant impact on large eddy simulations. Ref. [4] reports results of a
study on the effect of the formulation of the governing equations on aliasing errors.
A copy of the galley proof for this paper is included as Attachment B.

The second phase of the project involved implementing the dynamic SGS model
in a NASA code for simulating supersonic flow over a flat-plate. The model has
been successfully coded and a series of simulations has been completed. One of
the major findings of the work is that numerical errors associated with the finite
differencing scheme used in the code can overwhelm the SGS model and adversely
affect the LES results. A brief write-up of the results [5] has been submitted to the
AIAA 1997 Aerospace Sciences Meeting and is included as Attachment C.

One of the goals of the Langley Grad-Aero Program is to train young researchers
in Aerospace Engineering and related fields. The student supported by this project,
Evangelos T. Spyropoulos, has performed very well. He has grown as a researcherin
the very difficult field of turbulence. In 1993 he participated in the I[CASE/NASA
Langley summer workshop on Transition. Turbulence and Combustion. He again
visited NASA Langley during the summers of 1994 and 1995. It has been very
beneficial for him to interact with NASA personnel and with NASA visitors from
all over the world. Evangelos is currently finishing his Ph.D. dissertation and should
graduate this August. He is looking forward to a career in the aerospace industry
where he can put his understanding to good use.
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Evaluation of the Dynamic Model for Simulations of
Compressible Decaying Isotropic Turbulence

Evangelos T. Spyropoulos® and Gregory A. Blaisdeil®
Purdue Universiry, West Lafaverte, Indiana 47907

Several issues involving the use of the dynamic subgrid-scaie model in large-eddy simulations of compressible
turbulent Rows are investigated. The model is employed in simulations of compressibie decaying isotropic tur-
bulence, and its performance is compared against results from direct numerical simulations and experiments.
Results from a parametric study suggest the model captures compressibility effects well. Use of the dynamic model
in simulations of inhomogenecous flows requires fitering of the flowfield in physical space rather than Fourier wave
space. The use of spatial filtery is examined by conducting simulatioas of isotropic turbulence. Several implicit
filters are found to perform extremely well and similar to the sharp cutoff filter. One explicit filter performed well,
but all others provided excessive dissipation at higher modes. Two formulations of the dynamic mode!, proposed
by Moin et al. and Lilly, perform well, with Lilly’s being more accurate. Resuits suggest also a great insensitivity of
the model on the filter width ratio. A modification of the convective terms in the momentum and energy equations
is found to reduce the effects of aliasing errors. Finally, different formulations of the energy equation are examined.

A nonconservative form is found to be more accurate.

I. Introduction

N the past few years there has been a resurgence of interest in

performing large-eddy simulations (LES) of flows of engineering
interest. There are two roles for LES to play in the computation
of such flows. First, LES can be used to test lower order models:
k-¢, algebraic stress. and full Reynolds stress models. LES can
provide detailed data. which is difficult or impossible to measure
expenimentally and which is at much higher Reynolds numbers than
can be reached by direct numerical simulation (DNS). Statistical
data and physical insight gained from these simulations can be used
to evaluate and improve the lower order modeis. With this approach,
however, the subgrid-scale (SGS) model used in the LES has to be
validated in order to ensure that the LES data are correct.

Second. LES can be used as an engineering tool rather than as a
research tool. With the expected increases in computer capabilities
in the near future, especially from the use of massively parallel
computers, it may be feasible to perform LES of flows of engineering
interest. LES will remain an expensive tool, but it will likely be the
only means of accurately computing complex flows for which lower
order turbulence models fail.

Recently, there has been much interest in using the dynamic
SGS mode! to perform LES. The dynamic model was first intro-
duced by Germano et al.' and was extented for use in compressible
flows by Moin et al.? Since then, further refinements to the model
have been proposed.’~* The main advantage of the dynamic model
over other SGS models used in the past is that it requires little
prior experience with the type of flow being considered. The model
(dynamically) adjusts to the flow conditions by employing the re-
solved large-scale information to predict the effects of the small
scales.

So far, the dynamic model has been mostly tested in incompress-
ible turbulent lows and has been found to perform well. Moin et al.?
applied the dynamic model to compressible decaying isotropic tur-
bulence and found that it performed well and better than using fixed
values for the model constants. El Hady et al.” applied the modet
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May 19, 1995; accepted for publication May 22, 1995. Copynght (& 1995
by the Amencan Institute of Aeronautics and Astronautics, Inc. All aghts
reserved.
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“Assistant Professor, School of Aeronautics and Astronautics. Member
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to a transitional supersonic axisymmetric boundary laver with sats-
factory results. However, a number of issues regarding the use of the
model in LES of compressible turbulence remain to be addressed.
such as the ability of the model to capture compressibility etfects
without the need for explicit compressibility corrections.

In addition. there are issues that need to be addressed in applying
the dynamic model to inhomogeneous Aows. The dynamic model
requires filtering the resolved large-scale field. So far. it has been
mostly implemented in turbulent Aows that are homogeneous in at
least two directions where the filtering can be pertormed efficiently
(and exactly) in wave space using fast Fourier transforms. In more
complex inhomogeneous flows, this is not possible, and some kind
of discrete filtering has to be applied in physical space. In simu-
lations of such flows, three-point explicit filters have been mostly
used. A number of other spatial filters are available and require
testing.

The main objective of this paper is to examine the performance
of the dynamic SGS model in the context of compressible decay-
ing isotropic turbulence. The model is evaluated by making com-
parisons with results from direct numerical simulations. as welil as
with reported “high” Reynolds number, nearly incompressible ex-
perimental data. The simulations are used to assess the capture of
compressibility effects and to investigate issues regarding the im-
plementation of the dynamic model for inhomogeneous flows. The
reason for considering homogeneous turbulence is that the perfor-
mance of the dynamic model can be evaluated separateiv from the
effects of inhomogeneity.

II. Mathematical Formuiation
A. Governing Equations
In LES one computes the motion of the large-scale structures.
while modeling the noniinear interactions with the small scaies.
The governing equations for the large eddies in compressible Hows
are obtained after filtering the continuity, momentum. and energy
equations and recasting in terms of Favre averages. The filtering
operation (denoted by an overbar) maintains only the large scales
and can be written in terms of a convolution integrai,

fix)y = f G(x —x) f(x)dx' (0
2

where f is a turbulent field, G is some spatial filter (usualily a sharp
cutoff defined in Fourier space) of width equal to the grid spacing,
and D is the flow domain.
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The resulting equations of motion are 1s follows:

ity It
v ')'tl(pu,) =0 (2)
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represents the resolved-scale stress tensor. The effects of the smail
scales are present in these equations through the SGS stress tensor
and the SGS heat flux.

T, = pluu, —i,a,) (6)
g =duT -1 (7

respectively. and require modeling. A tilde is used to denote Favre
averages(f = pf/5). Also pisthedensity. T is the temperature. u,
is the velocity vector. and & is the thermal conductivity. The specific
heats at constant volume C, and at constant pressure C, are assumed
in this study to be constant. The large-scale molecular viscosity o
is assumed to obey the power law 2/, = (T/T)" ™, whereas the
large-scale pressure p is obtained from the filtered equation of state

= ﬁRf‘. The molecular Prandtl number Pr is assumed to be 0.7.
Note. that in deriving Eqgs. (2—3). the viscous. pressure-dilatation
and conduction terms were approximated in a similar fashion as by
Eriebacher et al.*

B. Dynamic Modeling of the Subgrid Scales

The SGS terms [Egs. (6) and (7} are modeled here using a com-
pressible low version of the dynamic SGS model of Germano et al.':
for details. see Refs. 2 and 3. The modet involves three coefficients,
C.C,.and Pr,. They are automatically adjusted. as time progresses.
based on the resolved flowtield information with the aid of a second
filter (test filter G) that has a filter width coarser than the grid Jsed
to perform the computations.

A refinement to the Moin et al.> model has been proposed by
Lilly.? The two versions differ only on the type of a contraction used
1o determine uniquely the modet coefficients, as is described later
in this section. Both versions were tested in simulations, and com-
parative results are presented in Sec. [[1.B. The results presented in
other sections were obtained using the Lilly contraction.

The model parameterization for the SGS stress and the SGS heat
Aux is given by

7., — trud, = =2C5aNSI(S, — $Sus,) 8)
. T = 2C 3AYSP (9)
S5CA° j (')7-.
g = -2CAISIAT (10)
Pr, c}x,
where
. f}-, (’)-, p c ¢ ;
5”__.1 _u_.,._“... MNIERRARY
: 2 v)Y ")rv

A= (axayant
The model coefficients are computed from
C={{L, = §Ludi)) A}/ (Mg ng) 1)
- 2475181 )

P?',=C((KV,B,)/'<—‘K!B;)) R
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where * denotes test-filtered quantities, A = (A, 3,4, (4, 1

the width of the test filter in the ith direction), ( ) denotes some kind
of averaging procedure, and

L, = 3&a, - (\/p)5a, pa, (14)
- N . /———-\
M, = =23%5151(S,, - {Sud,) + 227 5181(5, - 15us,,)
(15
= —
... AT . .07
N = A58 — - A 58— (16)
X, 1)(,
K, =paT - (1/6)6a.pT amn
Finally. depending on the choice of contraction used
S, Moin’s version
A, = (18
M, Lilly's version
and
5T . A
—_ Moin's version
B = ax; R

Ny Lilly's version

The model requires the above averaging procedure. an ad hoc
solution,' 1o prevent numerical instabilities due to a simplification
made in the derivation of the expressions for the model coetficients.
For dows having a direction of homogeneity, spatiai averaging is
usually performed along that direction. For the case ot homogeneous
turbulence. this results in volume averaging and is the approach
taken in this study. For this type of flow, the model coetficients vary
oniy with time.

C. Computer Implementation

The numerical method for the direct and targe eddy simulations
emploved a pseudo-spectral Fourier collocation scheme for spatial
differencing and a third-order Runge-Kutta method foradvancing in
time.” The validity of the numerical impiementation of the dynamic
model was established by performing a priori tests similar to those
by Moin et al. and comparing with their reported data.

III. Results
A. Capturing of Compressibility Effects

The ability of the dynamic model to capture compressibility ef-
fects was examined by performing LES of decaying isotropic turbu-
lence and comparing with the results obtained from DNS. A number
of simulations were conducted at different initial levels of com-
pressibility and Reynoids numbers. The cases listed in Table | were
considered.

The level of compressibility of the initial fields was controlled
by either varying the initial turbulent Mach number M, (cases 1-3).
or the fraction of the turbulent kinetic energy initially contained
in the dilatational velocity field x (cases 4~6). The etfect of the
turbulent Reynolds number Rer on compressibility was examined
in cases 7. 8. and 3 and alsoin cases 4, 2. and 9. [Here. M, = gq/c.
x =tq'/q)*. and Rer = pq*/(epn), where g is the rms magnitude
of the ductuation velocity, ¢ is the mean speed of sound. ¢ ts the

Table 1 Case parameters

Case M, X Rer
l 0.2 b} 1742
2 0.4 o] 2742
3 0.6 0 2742
4 0.4 0 2157
5 0.4 0.1 21357
6 04 02 2157
7 0.6 0 735
3 0.6 0 2156
9 0.4 0 /170
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Fig. 1 Time evolutions of rms density fluctuations for cases 1-3; effects
of initial M,.
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Fig.2 Time evolutions of rms density fluctuations for cases 4-6; effects
of initial x.
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Fig. 3 Time evolutions of rms density fluctuations showing effects of
initial Rer for cases a) 7, b) 8. and ¢} 3.
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Fig. 4 Time evolutions of rms density fluctustions showing effects of
initiai Rer for cases a) 4, b) 2, and ¢) 9.

rms magnitude of the dilatational fluctuation velocity, and ¢ is the
dissipation rate of turbulent kinetic energy per unit mass.]

All cases with purely solenoidal initial velocity fields (x = 0) had
uniform initial density and temperature fields, whereas the density
and temperature fluctuations in the others were obtained from the
isentropic relations and the condition for acoustic equilibrium (see
Sarkar et al.'""). The initial three-dimensional energy spectrum for
each case was of the form

E(k) x k*exp[—2(k/k,)? (20
p

where the wave number of the peak of the spectrum k, was setat 4.
The LES were computed on (32)° grids, whereas the DNS were
computed on (128)* grids.

Good. and percentwise consistent, agreement in all statistics con-
sidered was found between the LES and the DNS for all cases. This
is shown, for example, in Figs. 1—4, where the evolutions of the
rms density fuctuations between the LES and the (filtered) DNS
data for the above sets of cases are compared. (The time axes in
these figures have been scaled with the initial eddy turnover time
7. defined as the ratio of the lateral Taylor microscale and the rms
fluctuation velocity in a direction.) Similar findings were obtained
by comparing other statistical quantities, as well as one- and three-
dimensional spectra, indicating that the dynamic SGS model seems
to be capturing compressibility effects well for isotropic turbulence.

B. Comparison of Two Model Versions

[n the preceding results, Lilly's version® of the dynamic model
was employed. The Moin et al.? version was also tested for all
<usey It predicted higher values for coefficient C. smaller values
sor cocticient Cy, and similar values with Lilly's version for Pr.,
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Fig.5 Timeevolutions of mode! coefficients showing effects of different
contractions for case 6: a) C, b) C;, and ¢} Pr,.
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Fig. 6° Three-dimensional solenoidal and dilatational energy spectra
for case 6 at ¢t/ = 4.37; effects of different contractions.

as is shown. for case 6. in Fig. 5. Overall, the Moin et al. model
also performed well but provided higher amounts of dissipation
than Lilly's. as can be seen in the three-dimensional solenoidal and
dilatational energy spectra for the same case shown in Fig. 6. This
is most evident at higher wave numbers. The resuits are taken at a
time when the turbulent kinetic energy had decayed to one-fourth
of its initial value.

It should be noted that the values of Pr, obtained from either
version of the dynamic model were about 0.4-0.6 when the initial -
temperature field had a three-dimensional spectrum similar to the
velocity's. In contrast. when the temperature was initially set to
be uniform. Pr, values higher than unity were predicted by the
model. This behavior is believed to be due to differences in the
initial transients of the temperature fields and is another indication
for the need for dynamic modeling.

C. Effects of Varying the Test Filter Width

The only adjustable parameter in the dynamic model is the ratio
@ = A/ A of the widths of the test and the grid filter (see Sec. [1.B).
Based on a prion and a posterion tests of incompressible transitional
e e oy o ke b e

' . ggested further investigations using
Jitferent types of flows. This value has since been adopted by other
researchers and was used in most of the simulations presented here.

The sensitivity of the results on the choice of the filter width
rauo was also examined here for two cases of highly compress-
ible isotropic decaying turbulence (cases 6 and 9 from Table 1),
Five values of a were considered: 1.6, 16/9. 2. 16/7. and 8/3.
These correspond to Founer cutotf wave numbers tor the test tilter
of 10. 9. 8. 7. and 6, respectively. Note that the use ot smailer
or greater a values is undesirable. since it resuits in lest-tiltered
quantities that are either almost unatfected by the hitering or contain
only very large-scale information. respectively, and usually leads lo
ill-predicted model coefficients. Results for such cases are not pre-
sented here.

Noticeable differences in the evolutions of the model coefficients
were found when different values for @ were used in the simula-
tions. as 1s shown for case 6 in Fig. 7. (The model coetficients were
aiso calcuiated a priori from DNS results. and similar differences
were seen.)

Surprisingly enough, the choice of a seems to have only a very
small effect on the LES results.'! For instance, the rms density fluc-
tuations for case 6 (shown in Fig. 2 for @ = 2) varied by less than
3% for the five values of a considered (the differences are graphi-
cally indistinguishable). This difference was even smaller tor case 9.
Bestagreement withthe DNS was obtained when this parameter was
setto 2.

‘== LES {(a=1.8)
0.004 --~ LES (a = 16/9)
— L ES (= 2)
ooo2f = ¢ LES (a = 16&/7)
— LES (a = 83)
ot
0 1 2 3 4
a) 1744
0.025;
o
0.02} e T
0.015 ‘r,'-:?'-tf':.:_‘:-\\
0.01
0.005
0
b) 0 1 2 3 vt 4
1
Pr,
0.8
0.6
0.4
0.2
0
4
o 0 i 2 3 Yt

Fig. 7 Time evolutions of model coefficients showing effects of filter
width ratio for case 6: a) C, b) Cy, and ¢) Pr,.
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107
Tik)
10
— LES (WITH MODIFICATION
OF CONVECTIVE TERMS)
---- LES (WITHOUT MODIFICATION
s OF CONVECTIVE TERMS)
10
10° 10’

K

Fig.3 Three-dimensional temperature spectra from simulations of the
Comte-Beliot and Corrsin experiment; effects of modifying the coavec-
tive terms.

D. Modification of the Convective Terms
It should be noted that the convective terms in the filtered momen-
wm and filtered energy equations. Egs. (3) and (4), were modified
to the skew-symmetric form,
2] | 3 - 1. 3f 1 da;
—(fa,) = =— N+t — + = f— 21
8.:,(fu’) 23x,(fu’) 2“’3.:, 27 ax, @b

where f refers to pi; and AT . respectively.

This modification reduces the effect of aliasing errors,'!** which
seems (0 be a bigger problem in LES than in DNS because the flow-
fields are less well resolved. Shown in Fig. 8 are three-dimensional
temperature spectra from LES of the (high Reynolds number)
Comte-Bellot and Carrsin experiment'? (see Sec. [1I.F.2 for a de-
scription of the simulation). The LES without modifying the con-
vective terms had a pile-up at high wave numbers, which led to
instabilities, whereas the simulatdon with the modified terms was
weil behaved.

E. Alternative Formulation for the Energy Equation

In LES. there is also a choice in the formulation of the energy
equation. The most popular approach is the solution of a noncon-
servative formulation (intemal energy equation), since it requires
only modeling of the SGS heat flux (see Sec. lL.A). In contrast. ifa
conservative form (total energy equation) is used instead. then mod-
eling of additional SGS terms is required. An alternative procedure.
which does not require any additional modeling, is to solve for the
pseudo total energy. defined as

¢ = pC. T + paa,a; /2 (22)
The resulting equation is
D)+ DGl = e (Fyihy) = e (3)
v —(pu;) = —(ajju;) — uj—\Tij
PR T Pt A TP
g f.aT 3
F—k— | - C,—(qi 23
T X ( Bx,) . ax; @) (23)

This :prm is not in strong conservation law form; however, we refer
1o it here as the conservative form.

In LES of decaying compressible turbulence (case 6 from
Table 1) both formulations performed well, but the nonconserva-
live form was more accurate. The conservative form was found to
have somewhat of a pileup in the high wave number part of the
density and temperature spectra, as is shown in Fig. 9. This is be-
lieved to be due to aliasing errors originating from evaluating the
temperature from the pseudo total energy.

F. Effects of Employing Different Spatial Test Filters

As was discussed in Sec. 1I.B, the dynamic model requires (test)
dltering the resolved large-scale field. [n flows that are homogeneous
in at least two directions. the filtering can be performed efficiently
(and exactly) in wave space using fast Fourier transforms. In more
complex inhomogeneous fows, this is not possible, and some kind
of discrete filtering has to be applied in physical space. In the next
two sections. the formulation and testing of such filters is presented.

107
T(k)
107}
+ DNS
LES (NONCONSERVATIVE FORM) v,
---- LES (CONSERVATIVE FORM) ‘)
108
10° 10'

K

Fig. 9 Three-dimensional temperature spectra for case 6 at (/7 =
2.23:; effects of reformulating the energy equation.

1. Formulation of Spanal Filters

Many different formulations of spatial filters were examined to
determine their behavior in Fourier space. This was done because we
believe it would be desirabie for the spatial filter to have properties
similar to the sharp cutoff filter.

For uniformly spaced grids. the spatial filters are formulated as
follows:

N : - Np -t
- _,+ -n -~+ -n
feShadaathen N Lot fn oy

n=1 a =0

where f, is the function value at node ; and f, is the corresponding
filtered function value. N; is the number of implicit coefficients.
which are given by {a, ],and ¥, is the number ot explicit coefficients,
which are {a,}. .
The Fourier transform of the filtered function is given by F =
GF. where F is the Fourier transform of the function and G is
the filter transfer function. For the filier formulation (24). the fiiter

transfer function is
al 21km
1+ E AW COS N

= 2rkn
G = Z a,.cos( )
a=0) N mai
(25)

where k is the wavenumber and N is the number of grid points.
The first filters to be considered are approximations to the top-hat
filter in physical space. The top-hat filter is defined by

. , I if x—A/2<x sx+4A2
Gix—-x)= ; (26)
0 otherwise

where the filter width A is assumed here equal to 2Ax (as was
suggested ia Sec. III.C). The convoiution integral in Eq. (1) can
be approximated in various ways. Using three collocation points
and the trapezoid rule gives ap = 1/2 and a; = 1/2. With three
collocation points one can improve the accuracy of the integration
by using Simpson’s rule, which givesay = 2/3 anda, = 1/3. If the
integration is done analyticaily, then a spectrally accurate formula
is obtained.

The filter transfer functions for these schemes are shown in
Fig. 10a against that of the sharp cutoff filter. The top-hat fiter
behaves very differenty from the sharp cutoff filter and is more like
the Gaussian filter in that some of the low wave number modes are
reduced in amplitude whereas some of the high wave number modes
are retained. )

A second set of filters is obtained by approximating the sharp
cutoff filter in a least squares sense, with certain constraints imposed.
Three constraints are considered. Constraint 1 is that the filter be
mean preservering. This is important because the filter is supposed to
separate large and small scales and should not alter a uniform field.
For the filter to be mean preserving..it is necessary that G(0) = 1.
Constraint 2 is that the end point of the filter transfer function is fixed
to be zero: i.e.. G(k = N/2) = 0. This constraint is not required
on any physical basis: however. we believe it is a desirabte property
of the filter transfer function. Constraint 3 is that the ratio of the
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Fig. 10 Comparison of filter transfer functions for various spatial filters: a) top-hat filters, b) sharp cutofY least squares filters, ) Lele filters, and

d) compromise filter.

filter width to the grid spacing,. A/Ax, be 2, since this is the chosen
standard vaiue.

To implement constraint 3, one has to define the filter width for
a given filter. We have chosen to define the filter width in a manner
analogous to how the integral length scale is defined for a two-point
correlation. For a discrete filter this corresponds to

Y&

A= —

A_El -le @7
/=

Since the filters are mean preserving

N .
Y Gi=6=1 (28)

)=t
and
- N2
A 1 1
— ==/ o 29
dx Gy /Nk=-;/2+l

This definition is dependent on the number of grid points ¥, which
is undesirable. A more useful formulation can be obtained by letting
K = 2U/N. Ak’ = 22k/N (where Ak = 1) and G'(k") = Gk).
where G (k) is given by Eq. (25). so that

A—I
Ax

Taking the limit N — oo and using the symmetry of G’ results in

N i
2 =1// G'(k') dk’ 31
Ax o _

This definition is consistent with the length scale obtained from the
cutoff wave number when a sharp cutoff filter is used. which is the
reason it was chosen. An alternate definition in terms of the second
moment of the filter function was used by Leonard'* for the top-hat

N2
G'(k) Ak’ (30)

k=-N/2+1

o) —

filter and the Gaussian filter; however, for the sharp cutoff filter such
a definition gives an infinite filter width. and for some of the other
filters considered in this study, an imaginary filter width is obtained.
Therefore, the definition given in Eq. (31) was adopted.

The least squares problem is formulated as minimizing the inte-
grated square difference between the filter transfer function G'(k")
and the transfer function for the sharp cutoff filter G, (k). The free
parameters are the filter coefficients {a,} and {a. }. From constraint
| we have

Ne—1 Ny

G0 = Za,. 1+Za,.. =1 (32)

LET m=]
Constraint 2 gives
Ne =1
Chk=1)=0= Z an (33)

n={

These two equations can be solved for ay,-, and aw,-; in terms
of the other parameters, so that the numbers of degrees of freedom
is reduced by two. Constraint 3 was enforced by using a penaity
function. The function to be minimized is

] - 2
E =f [G'(K'Y = Gl (KN dk’ + A(i - 2) (34)
Ax

0

The Nelder-Mead simplex search algorithm! was implemented to
solve the minimization problem. The integrals needed to evaluate £
were calculated using Romberg integration with the error tolerance
set to 10~'*. The constant A was set to 10" so that constraint 3
was met with an error on the order of 10~%. For explicit filters,
the integrals can be evaluated analytically, and the minimization
problem can be soived exactly. This was used as a check of the
numerical procedure. For this case. Eq. (31) reduces to

A/Ax = lay (35)
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Table 2 Summary of spatial filtery tested in stmulations

Filter dn ay ay dy ag @
| 3-pt explicit, trapezoid 0.5 0.5
2 3-pt explicit. Simpson 0.6666667 03333333
3 5-pt explicit, least squares 04726761 05819719 -0 05464480
1 7-pt explicit, jeast squares s 06744132 0 -0.1744132
5 S-pt implicit-7-pt explicit, least squares 05 08105146 0.4830535 0.1725389 0 0.9661071
6 S-pt implicit-7-pt explicit, Lele 05 0.75 0.3 0.05 0 0.6
7 5-pt implicit-7-pt explicit. compromise 0.5 0.8056734 0.4684092 0.1627358 0  0.936818S
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Fig. 11 Time evoiutions of rms density fluctuations for case 6; effects
of spatial filters: a) explicit and b) impiicit.

The resuiting filter coefficients are given in Table 2. The three-
point explicit filter is the same as the trapezoid filter. No five-point
explicit filter was found that met all of the constraints, and so con-
straints 2 and 3 were dropped for the five-point explicit filter shown.
The highest order explicit filter considered is a seven-point filter. A
number of implicit filters were found. The one discussed here is a
five-point implicit—seven-point explicit filter.

The least squares filters are compared to the sharp cutoff filter
in Fig. 10b. As the number of filter coefficients is increased, bet-
ter agreement with the sharp cutoff filter is obtained, as expected.
However, the filter transfer functions are oscillatory and display
large amplitude overshoots, which is believed to be undesirable.

A third set of filters is obtained following Lele'$ in which a dif-
ferent set of constraints are placed on the filter transfer function.
To compare these filters to the sharp cutoff filter with A/Ax = 2,
the extra constraint G(k = N/4) = 1/2 was imposed. The filters
obtained are shown in Fig. 10c. In general, the filters are smooth,
monotonically decreasing from | to 0. However, the filters are not
as sharp as the five-point implicit method obtained from the least
squares approach. Note that the three-point explicit filter is the same
as the trapezoid filter.

The filters obtained from Lele’s formulation are very smooth,
whereas the filters found from the least squares approach are much
sharper but exhibit oscillations. In an attempt to reach a compromise
between the two filters, we constructed filters obtained by combining
the filter coefficients in the following way:

a, = ya® + (1 = pats*e an = Vay + (L = et (36)

Figure 10d shows the transfer function for the five-point implicit-
seven-point explicit filter with ¥ =0.2. This compromise filter

Fig. 12 Three-dimensional energy spectra for case 6 at ¢/ = 4.37;
effects of spatial filters: a) explicit and b) implicit.

gives a transfer function that is sharper than that from the Lele
formulation but does not have as large an overshoot as that from the
least squares approach.

2. Testing of Spatial Filters

A number of spatial filters from the preceding section were tested
in simulations. The filters considered are shown in Table 2 (see also
Fig. 10). Homogeneous flow test cases were chosen, so that the
effects of these filters can be compared 1o that of the sharp cutoff
filter, defined in wave space, as well as against available DNS or
experimental data.

Results from simulations of a highly compressible decaying
isotropic flow (case 6 from Table 1) are presented first. The histories
of the rms density fluctuations are compared in Fig. 11. Figure 12
shows comparisons of three-dimensional energy spectra taken at a
time when the turbulent kinetic energy had decayed to one-fourth
of its initial value. The results from a DNS are also included in
these figures for further comparison. The evolutions of the model
coefficient C are shown in Fig. 13. All spatial filters are found to be
more dissipative at higher modes than the sharp cutoff. All impiicit
filters performed well and. among them, filter 7 was found to be
the best candidate. Most of the explicit filters were very dissipa-
tive and performed poorly, with the exception of filter 4 which gave
results very similar to those from the sharp cutoff filter. However,
this filter predicted small negative values for the coefficient C, and.
consequently, from Eq. (9), negative values for the subgrid-scale tur-
bulent kinetic energy r;;. This may, in some cases, lead to numerical
instabilities, aithough it did not here.

The spatial filters were also tested for the case of a nearly incom-
pressible trbulence. The isotropic grid-generated (high Revnoids
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Fig. 14 Time evolution of turbulent kinetic energy from simulations of
Comte-Bellot and Corrsin’s experiment; effects of spatiai filters: a) ex-
plicit and b) implicit.

number) turbulence experiment of Comte-Bellot and Corrsin'? was
simulated as a temporal decay on a (32)} grid. The initial veloc-
ity fields for the simulations were purely solenoidal and designed
to have the same three-dimensional spectrum as that reported at
tUs/M = 42 in the experiment (where U is the mean flow velocity
and M is the grid size). The initial pressure fields were computed
from the incompressible Poisson equation, while the density was
assumed to be uniform. The initial Mach number was set to 0.3.
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Fig. 16 Time evolution of model coefficient C from simulstions of
Comte-Bellot and Corrsin’s experiment; effects of spatial filters: a) ex-
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The sharp cutoff filter was employed first in the dynamic model.
The predicted time development of the turbulent kinetic energy and
the three-dimensional energy spectra compare well with the avail-
able experimental data, as shown in Figs. 14 and 15, respectively.

The performance of the spatiai filters was then examined.
Figures 14 and 15 also present results from these simulations. The
evolution of the model coefficient C predicted from the various spa-
tial filters are compared against the one from the sharp cutoff filter in
Fig. 16. Filter 6 was found to be the most dissipative of the implicit
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filters. However, all of these filters performed weil and similariy to
the sharp cutoff filter. Filter 4, the seven-point explicit filter, again
performed very weil. in contrast to the three-point and five-point
explicit filters, which provided great amounts of dissipation.

For the Comte-Betlot and Corrsin simulation, we neglected C, on
the basis that for nearly-incompressible flows t, is smail compared
to the thermodynamic pressure.b!7-!* This was done to avoid insta-
bilities in the computations that occurred during the initial transient
period for some of the spatial filters. However, negligible difference
on the results was observed when the sharp cutoff filter was used
and C, was computed from the dynamic mode!.

IV. Conclusions ‘

Several issues involving the use of the dynamic SGS modet in per-
forrmng LES of compressible turbulent flows have been examined
by employing the modeli in simulations and comparing with results
from DNS or experiments. Decaying isotropic turbulence was con-
sidered in order to evaluate the performance of the model separately
from the effects of inhomogeneity.

We conducted a parametric study where the levels of compress-
ibility of the initial flow fields were varied. The model, with its
ability to adjust itself to the flow conditions, was found to predict
well, from a statistical viewpoint, the bulk of the flow. The dynamic
model was able to capture compressibility effects well and does not
require any explicit compressibility comrections.

In performing LES of inhomogencous compressible turbulent
flows using the dynamic model, the filtering operation required by
the mode! can not be done in wave space but, rather, has to be ap-
proximated in physical space. We have examined the behavior of
several implicit and explicit spatial filters in wave space. We aiso
conducted simulations of highly compressible and high Reynoids
number nearly incompressible cases of decaying isotropic turbu-
lence to study the performance of such filters against that of the
sharp cutoff filter defined conveniently in Fourier space. The five-
point implicit—seven-point explicit filters examined performed ex-
tremeiy well and shouid be considered as good candidates for future
use. However these filters would be more expensive to employ than
explicit ones. The former filters have transfer functions that are
much sharper than the other filters near the cutoff mode, but exhibit
oscillations that as suggested by the simulations are not of seri-
ous concemn. The seven-point explicit filter gave good results aiso;
however, it predicted small negative values for modei coefficient
C,. which is undesirabte. The three-point and five-point explicit fil-
ters were very dxssnpauve. especially in the high Reynoids number
simulation.

Twa versions of the dyna!mc model werg employedand tested in-
: LES. Thé version byt.my‘-'was focmwﬁcmme than the -

versiog by Moinetal? =~ <= "

A number of simulations were afso pgfomadmsmdy the effect
of the filter width ratio—ifve only adjustable parameter in the dy-
namic model. The results suggest x great inseasitivity of the model
to this parameter. Best agreement with the results from DNS was
obtained when this parameter-was set 102,

Modification of the_gonvective terms in the filtered momen-
tum and filtered energys equations improves the accuracy of the
simulations, as well as the stability of the numerical method. In
addition, the nooconservative formulation of the energy equation
was found to be somewhat better than the conservative form.
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Abstract

The effect on aliasing errors of the formulation of nonlinear terms. such as the convective terms in the
Navier-Stokes equations of fluid dynamics. is examined. A Fourier analysis shows that the skew-symmetric
form of the convective term results in a reduced amplitude of the aliasing errors relative to the conservative and
nonconservative forms. The three formulations of the convective term are tested for Burgers’ equation and in
large-eddy simulations of decaying compressibie isotropic turbulence. The resuits for Burgers' equation show
that. while in certain cases the nonconservative form has the lowest error. the skew-symmetric torm is the most
robust. For the turbulence simulations, the skew-symmetric form gives the most accurate results, consistent with
the error analysis.

1. Introduction

Numerical simulation of nonlinear conservation laws, such as the Navier-Stokes equations of fluid
dynamics, can give rise to nonlinear instabilities. This was pointed out long ago by Philips [14]. The
instability was attributed to aliasing errors, in which the product of low order modes creates high fre-
quency modes that when discretized appear as low frequency modes. This difficuity was overcome by
Arakawa [2] for two-dimensional, incompressible problems using the vorticity-streamfunction formu-
lation by developing a finite differencing scheme which satisfies certain global conservation properties.
The modifications ensure conservation of kinetic energy and squared vorticity in the absence of ex-
ternal and viscous forces and time differencing errors. It was found that by meeting these constraints
the instability was suppressed.

This idea was extended to three dimensional simulations by Kwak [11], who used primitive variables

and rewrote the convective term in the momentum equation,
o,
U, —. (1.1
dr,

* Corresponding author.
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in the modified form

1 0 o o, o
_Z-EJ_(L“UJ)TEUJa'_I]" (l")

where use has been made of the conservation of mass equation for incompressible flow. du,/dzr, =
0. The formulations in (1.1) and (1.2) are referred to as the nonconservative and skew-symmetric
formulations respectively. A third formulation is the conservative form,

9 <
5, (uauy). (1.3)
Using the skew-symmetric formulation in (1.2), Kwak showed that the integral conservation properties
are maintained by the finite differencing scheme. Mansour, Moin, Reynolds and Ferziger [12] showed
that the identity equating (1.1) and (1.2) does not hold numerically and that this is the reason the the
global conservation properties are not satisfied. One can show that the reason (1.1) 1s not equivalent
to (1.2) numerically is the occurrence of aliasing errors. The skew-symmetric form of the convective
terms were extended to the simulation of compressible flows in [4,8,15].

In [12] the rotational form of the convective term was considered. It is given by

du; dw\_ 0 [l (1.4)
4 dz, Oz dz, \ 2 ) ' ’

and is widely used in incompressible simulations. The rotational form ensures additional conservation
properties including that of helicity {10]. Horiuti [10] performed numencal experiments of incompress-
ible turbulent channel flow using a finite differencing scheme with the skew-symmetric form and the
rotational form. and concluded that the skew-symmetric form was superior. Horiuti autributed the poor
performance of the rotational form to large truncation errors in the vicinity of the wall. Zang [16] per-
formed spectral calculations of incompressible turbulent channel flow using the skew-symmetric form
and the rotational form of the convective terms. He was also able to perform dealiased simulations in
which aliasing errors were removed, and he showed that the poor performance of the rotational form
was due to aliasing errors.

Zang states that no theoretical analysis is available to explain why aliasing errors are reduced for
the skew-symmetric form. In the current paper we examine the aliasing errors created by the nonlinear
convective term and show, through a Fourier analysis, that the magnitude of the aliasing errors is
reduced for the skew-symmetric form compared to conservative and nonconservative forms. The
analysis method for the rotational form becomes too complicated to draw any conclusions regarding
it: however, the low aliasing errors for the skew-symmetric form can be understood. We then test
the three formulations on Burgers' equation and in large-eddy simuiations of compressible isotropic
turbulence.

There are other methods of reducing aliasing errors besides reformulating the convective terms.
Orszag [13] pointed out that aliasing errors for a product can be eliminated by truncaung the Fourier
coefficients of the velocity and the product using the so-called “2/3 rule.” For some problems, such
as simulation of compressible turbulence, which are best time advanced in physical space rather
than in Fourier space, this procedure requires additional Fourier transforms and can be prohibitively
expensive. An alternative which does not use Fourier transforms is due to Anderson [1]. With this
procedure the velocity and the product are filtered in physical space using a digital filter. Aliasing
errors are eliminated by forming the product on a retined grid. This procedure can aiso be expensive
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if high accuracy 15 required. Canuto et al. {5] point out that aliasing errors cease to be an issue if
adequate resolution 1s used. However, for problems such as large-eddy simulation of high Reynolds
number turbulence. in which the flow field is not well resoived, aliasing errors are important and
increased resolution is not a possible solution. Therefore, the reformulation of the convective terms
discussed in the current paper offers an alternative to more expensive dealiasing procedures,

2. Error analysis

We are interested in examining the aliasing errors that arise in using pseudospectral Fourier methods
to solve nonlinear partial differential equations. The specific problem we are concerned with is the
solution of the compressible Navier-Stokes equations. and so we take the nonlinear convective terms as
the form of interest. In order to analyze the aliasing errors, we consider a mode! problem of evaluating
a derivative of the form

: |
= (fg). an

The convective terms in the momentumn and energy equations {(and in a passive scalar or chemical
species equation) can be put in this form.

Consider the product fg. Using a spectral Fourier method, the functions f and g are represented by
a finite set of Fourier modes evaluated at )V discrete collocation points as follows

Ni2
fr= > fae (2.2)
P
n=—N/2+i
N2
~  ikmIy ~ 1
g = Jme : (2.3
m=-N,1+1
where z, = (j=1)L/N, (j =1,....V),are the collocation points, k, = 27n/ L are the wavenumbers,

L is the length of the computational domain, and f,, and G, are the Fourier coefficients. The continuous
functions f{z) and g(z) are approximated by a finite set of Fourler modes,

N2
flr) = Z fne‘k"‘. (2.4
n=—N/24l
N2
glz) = Y Jmeltms. (2.5)
m=—N/2+1
The product is
N N2
flrigle) = ST fafmetrml (2.6)

n=-=V/2+Im=-Y 2~
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Fig. 1. Aliased wavenumber versus true wavenumber.

When this product is discretized, some modes will have values of (k, + k;,) which lie outside the
range of resolved wavenumbers, which is given by

(-5 () 5 (3)

for .V even. On the discrete collocation points these modes will be identical to modes that lie within
the range of resolved wavenumbers. Thus the unresolved, high wavenumber modes are “aliased” to
resolved, lower wavenumber modes. (See [5] for a more complete description.) A Fourier mode which
has a wavenumber outside the resolved wavenumber range is aliased to the mode within the resolved
wavenumber range which has a wavenumber that differs from (k, + k) by an integer multiple of
27N/ L. We will denote the wavenumber of the resolved mode to which the mode (k, +Am) is aliased
by (kn + km)°. A graph of (k, + &m)® as a function of (k, + k) is shown in Fig. 1. Note that if
(kn + km) lies within the range of resolved wavenumbers then the mode is not aliased to a lower
frequency mode and (kn + km)° = (kn + Am).

The discrete derivative is found by transforming the discrete product values, multiplying the Fourier

coefficients by i = +/—1 times the wavenumber, and inverting the transform. This procedure gives
3 1 N/2 N2
. -~ Y S S X
=(f)| = X X ikt k) e, 2.7
4 nz=—N; 2+l m=-\/21+1

For modes that contribute to the aliasing error the Fourier coetficients are multiplied by the wavenumber
of the resolved mode rather than the actual wavenumber.
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n

[t will be shown that the skew-symmetric form of the nonlinear term gives a reduced amplitude of
the above aliasing error. Consider rewriting the derivative of the product as

O imctoaHLyssd .
Zug--a o) 29

Upon substituting the Fourier representation for f(.r) and g(x) and discretizing, this becomes

N2 R
Z S (ke + k) + (1= @) (kn + k)| Fuime! (o 7im) 22 29
n=— N/l m=—N/2e]

where the fact that k° = k for the resolved wavenumbers has been used. Since, for modes that create
aliasing errors, (kn + Am)® # (kn + Akm), the value of the derivative depends on the parameter a.
When evaluated analytically, (2.8) is of course equivalent to (2.1) and independent of a. However. the
product rule for differentiation used to obtain this form does not hold numerically.

Let & = [a(kn +hkm)®+ (1 —a)(kn +km)] be an effective wavenumber that multiplies the
Fourier coefficients when a derivative is taken. For Fourier modes with (kn + k) within the range
of resolved wavenumbers, there is no aliasing error, whereas for modes that create aliasing errors. A*
will affect the magnitude of the aliasing errors. Therefore, it may be possible to set the parameter o
1o reduce the aliasing error.

With o = | we recover the original conservative form of the nonlinear term, while with o = 1,2
we have the skew-symmetric form, and with & = 0 we have the nonconservative form. A plot
of k* as a function of (kn + km) for the three values of « is shown in Fig. 2. (Only the range of
(ka + k) that gives rise to aliasing errors is considered.) As seen in Fig. 2, the skew-symmetric
form gives values of k* that are small for modes with (k, + km) close to the range of resolved
wavenumbers. Modes in this range come from a product of modes with intermediate wavenumbers
or the product of a mode with a low wavenumber and a mode with a high wavenumber. The value
of k* for the skew-symmetric form is larger for higher values of (kn + k;»), and these modes come
from products of two high wavenumber modes. For problems of physical interest. the solutions have
Fourier coefficients that decay at high wavenumbers, and aliasing errors coming from the modes
close to the resolved wavenumber range generaily have higher amplitude than aliasing errors coming
from higher wavenumber modes. Therefore, it is more important to suppress the aliasing errors coming
from the region close to the resolved wavenumber range. Since the skew-symmetric form has a smaller
amplitude for the aliasing errors coming from these modes than the other formulations, it is expected
to perform better.

To determine if the reduction in aliasing errors is realized in practice we consider two problems.
The first is the one-dimensional viscous Burgers’ equation, and the second is a large-eddy simulution
of compressible isotropic turbulence.

Although here we are considering the convective term, other nonlinear terms. such as ditfusion
terms with nonuniform transport coefficients, can be written in the skew-symmetric form. We believe
aliasing errors would be reduced for these terms as well.
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nonconservative form, - — - —.

3. Burgers’ equation model problem

As a model problem we consider the one-dimensional viscous Burgers® equation,

Uy + Uy = YUz, (3.1)
where a subscript denotes partial differentiation. Benton and Platzman (3] give several exact solutions
and we choose their case (5.2) in which the boundary conditions are periodic and the iniual conditions
are given by u(z.0) = —Rsin(z).

Burgers’ equation was solved numerically using a Founer pseudospectral method with a 3th order
accurate Runge-Kutta-Fehlberg time advancement scheme [9]. The nonlinear convective term was
formulated using the following three forms

l 5 ' A -
E(u->27 l.}.;)
t 1 < A
I(uz)Jr + 5 uug, (3.3
Uz, (3.4

which are the conservative, skew-symmetric and nonconservative forms respectively. The specific case
we examine has R = —20 and was integrated to ¢ = 0.075. The time step was At = 0.0001 and
the time differencing errors were checked to ensure that they were negligible compared to the spanal
differencing errors. The calculations were done on a Cray YMP tfor which the word length 1s 62 bits
in an effort to keep round off error low.

The numerical solutions for . = 32 are compared to the exact solution in Fig. 3. and the maximum
and r.m.s. errors are given in Table 1. At first the resuits are somewhat surprising because. while the
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Fig. 3. Solution to Burgers’ equation at t = 0.075 (.V = 32). Exact solution. —, conservative form. - - - - . skew-symmetnic
form. — - —. nonconservative form. - — ~ —.
Table 1
Maximum and r.m.s. errors in the numerical solution to Burgers' equation
N =32 N =33
Formuiation a max rms. max r.m.s.
Conservative 1 111 0.127 .10 0.056
Skew-symmetric /2 0.59 0.056 0.33 0.018
Nonconservative 0 0.46 0.026 314 0.202

skew-symmetric form performs better than the conservative form, it does worse than the nonconser-
vative form. However, we found that if the calculations are done using N = 33 gnd points, the results
(given in Table 1) show the skew-symmetric form performs the best and the nonconservative form
does the worst, by a large margin. This behavior seems perplexing; however, a detailed investigation
gives some insight into the differences in the formulations.

The convective term was examined in detail to see the differences in the formulations. The exact
solution u(z.t) was calculated at t = 0.075 at the IV collocation points, and then the convective term
was formed using the three formulations. The magnitudes of the Founer coefficients are shown n
Figs. 4 and 3 for V = 32 and .V = 33 respectively. Also shown are the Fourier coefficients tor the
exact convective term (the Fourier coefficients were obtained by transforming the exact convective
term on .V = 256 collocation points) and a dealiased convective term, which is described below.
From Fig. 4 one finds that for .V = 32 the Fourier coefficients from the nonconservatve formulation
lie the closest to those from the exact solution, while for NV = 33 the Fourier coefficients trom the
skew-symmetric form are the closest. (Because of the symmetry of the problem, the phase of the
Fourier coefficients is ==,2. and all of the numerical solutions have the same phase of the Fourer
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Fig. 4. Magnitude of the Fourier coetficients of the c: - =ctive term formed using the exact solution at t = 0.075 on .V 2
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Fig. 5. Magnitude of the Fourier coetficients of the convective term formed using the exact solution at t = 0.075 on .V = 33
gnd potnts. Conservative form, . skew-symmetric form. +. nonconservative form. o, dealiased, —. exact, = = - —

coefficients as the exact solution. Therefore, examination of the magnitude of the Fourier coefficients
of the convective term gives a proper comparison.)

For .V = 32 the magnitude of the Fourier coefficients for the conservative formulation are larger
than those of the skew-symmetric form and those for the nonconservative formulation are smaller.
while for .V = 33 these relative positions are switched. The switching of the relative magnitude of the
Fourier coefficients in the numerical solutions for .V = 32 and V = 33 is due to the phase relationships
among the Fourier coefficients of the solution. To see this, consider the factor k7 fnjm in (2.9). The
phase of the Fourter coefficients of the exact solution are 7/2 for even positive or odd negauve mode
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numbers. and —= /2 for odd positive or even negative mode numbers. So j,, =isgnin)(—1 !”’jm For
the modes that create aliasing errors, the factor can be written

Halkn + km)® + (1= a)(kn + km)] [isgn{n)(~1 )""fn‘, Iisgn(m)(= "G l]
= i[a(kn = kn)® + (1 = Q){kn + k)] fall

)n-m+l‘

tn

‘.]ml _l (3.2)
(Since the sign of n and m will be the same for modes contributing to the aliasing error.
sgn(n)sgn(m) = L.) If the product of modes n and m are aliased to mode [, then [ = n+m+sgn({).\.
The Fourier coefficients of the exact convective term have phases that are £7,/2 with the sign opposite
that of the coefficients for the solution (with the exception of the [ = =1 modes). Pulling out a factor

to account for the phase we have
(isgn(D(= 1) sgn(D) [alkn + k) + (1 = ) (kn + k)] | fol Fonli= D75V (3.6)

Therefore, the aliasing error will be muitiplied by (=1) depending on whether the number of collocation
points, .V, is even or odd. The error is either added or subtracted depending on the the parity of .V
and the sign of &*, which is opposite fora =0 and a = 1.

As an example, consider [ = 15. With :V = 32 the Fourer modes that contribute to the aliasing

error are (n,m) = {(=13,=2), (=14,=3), ..., (=2.—=15)}. The factor in equation (3.6), without the
phase term, is
[a(13) + (1 = a)(= 1) | FallGml (= 1) 72 = [322 = 17]| fu]1Giml- (3.7)

For a = 1, 1/2. 0 the factor in the brackets is 13, —1 and —17, which corresponds very well to
the relative magnitudes of the differences between the Fourier coefficients of the numerical solutions
and the dealiased result for mode 13 in Fig. 4. With .V = 33 the Founer modes that contribute to

the aliasing error are (n.m) = {(=16,=2),(=15.=3),...,{=2,—16)}. The factor in equation (3.6).
without the phase term, is
[a(15) + (1 = a)(=18)] | Fal[ml (=)™ = [18 = 33a} | FallFm. (3.8)

For a = 1. 1/2. 0 the factor in the brackets is —13, 1.5 and 18, which again correspond very well
to the results for mode 15 in Fig. 5. Therefore, we can understand the large shift in the error in the
convective term observed when NV is changed.

To see the aliasing errors produced by the three formulations they are compared to a dealiased result
in which the aliasing errors have been eliminated. Forming the product uu, creates Fourier modes
with mode numbers —:V, ..., V, which would require 2.V collocation points to represent. A dealiased
convective term is formed bv starting with u on .V collocation points. transforming to wave space.
padding the Fourier coefficients with zeros so that at least 2.V Fourier coefficients are used (we used
256 modes, although this is unnecessary), forming the Fourier transform of u,, transforming u and u .
back to physical space on the larger number of collocation points, forming the product, transtorming (o
wave space, and keeping only the .V Fourier coefficients. This is the method that was used to compute
the curve labeled “dealiased convective term” in Figs. 4 and 5. One sees that the skew-symmetric torm
is very close to the dealiased form, as one would expect from the analysis in Section 2. Thererfore.
the skew-symmetric form of the convective term gives a viable alternative to dealiasing. Note that
dealiasing is very expensive for the compressible Navier-Stokes equations because of the extra Founer
transforms needed. Although dealiasing is used for incompressible turbulence simulations. It 1s not
practical for the compressible equations.
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However, as is clear in Figs. 4 and 3, the dealiased convective term is not the same as the exact
convective term. This is because the exact solution cannot be represented by a finite number of Fourier
modes, and so the Fourier coefficients computed using .V = 32 or .V = 33 collocation points are not
the exact Fourter coefficients. The difference is due to truncation error. Just as with the aliasing
errors. the value of the truncation error is determined by the phase relationships of the exact Fourier
coefficients of the solution. Because of the symmetry of the solution, the panty of .V can make a
large difference in the truncation error, as is clear in the difference between the dealiased solutions in
Figs. 4 and 3. With this understanding one can see that the low value of the error in the convective
term for the nonconservative formulation with ¥ = 32 is due to aliasing errors parually canceling
truncation errors, whereas with N = 33 aliasing errors add with the truncation errors to produce a
very large error.

From the above analysis we see that the low error for the nonconservative formulation on .V = 32
arid points is fortuitous and is due to the particular symmetry properties ot the solution. Although the
skew-symmetric form of the convective term does not give the least error in all cases, it is the most
robust. For problems. such as the simulation of turbulence, where the solution has a more random
distribution of phases of the Fourer coefficients than for the solution of Burgers’ equation, the skew-
symmetric form is expected to perform better than the other formulations. In the next section we
examine the behavior of the various formulations applied to large-eddy simulation of turbulence. The
above example also points out the danger of drawing conclusions about numencal methods based on
simple problems. although such problems are useful in understanding how a numerical method works.

4. Large-eddy simulation

The problem we are interested in is the simulation of turbulent Hows, specifically compressible
homogeneous turbulence. One approach is direct numerical simulation (DNS), in which the time
dependent Navier-Stokes equations are solved without any kind of turbulence model. However. because
of the wide range of length scales that occur in turbulence, DNS is limited by current computer
capability to low Reynolds numbers. A means of simulating flows at higher Reynolds numbers is to
perform large-eddy simulations (LES), in which the motion of the large eddies are resolved. while the
effects of eddies smaller than the grid spacing are modeled. Aliasing errors occur in both DNS and
LES; however. since large-eddy simulations are by definition not well resolved. aliasing errors are a
more important issue with LES than with DNS.

The large-eddy simulations used are discussed in detail in [15], so only a brief overview will be
given here. The simulations are of decaying isotropic compressible turbulence. The computer program
uses a Fourier pseudospectral collocation method with a compact storage third order Runge-Kutta
time advancement scheme. The computations were performed on a Cray C90.

The convective terms in the momentum and internal energy equation were written in the general
form

d dg af,
x— (fg;)+ (1 —a) ==y, 4.1
3z, o) = fo3e, Tam, Y,
where in the momentum equation f, = pu, and y; = w,, while in the ¢nergy equancn 7= p0C T

and 5, = u,. (Note that the internal energy equation is solved in LES of compressitle trbulence.
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Fig. 6. Decomposed velocity spectra from LES of compressible isotropic turbulence. Solenoidal spectra. £,(k), dilatational
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Fig. 7. Temperature spectra from LES of compressible isotropic turbulence. Conservative form. - - — —, skew-symmetric
form. —. nonconservative form, — - —, DNS data. o.

rather than the total energy equation, because of the difficulty in modeling additional terms that anse
with the use of the total energy. See [7] and [15] for a discussion.) Setting o = 1, 1/2 or O gtves the
conservative, skew-symmetric, and nonconservative formulations respectively.

The conditions used are those of case (6) in [15] for which the initial turbulent Mach number is 0.4,
and the grid has 323 points. In order to see the differences in the effect of the formulations, we examined
the three-dimensional power spectral density of the velocity field, decomposed into solenoidal and
dilatational parts, and the temperature field. £,(k), E4(k) and E7(k) respectively. The velocity spectra
are shown in Fig. 6 and the temperature spectra are shown in Fig. 7, at a time when the turbulence
has decaved for two initial eddy tumover times. Also shown for comparison are the results from a
DNS using 128> grid points. The results for the conservative formulation and the nonconservative
formulation show an unphysical pile-up in the spectra at high wavenumber &. This behavior is due to
aliasing errors. The skew-symmetric formulation results, on the other hand. show very little pile-up
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in the spectrum. As an additional test, simulations were also done on a higher Revnolds number case,
which corresponds to the experiment of Compte-Bellot and Corrsin [6]. The conservative form and the
nonconservative form resulted in numerical instabilities that halted the simulations, while the skew-
svmmetric form resulted in a simulation that was completed and compared well with the experimental
data. These results show that the skew-symmetric formulation of the convective terms reduces aliasing
errors and produces a more accurate solution than the conservative and nonconservative formulations.

3. Conclusion

The effect of the formulation of the nonlinear convective term on aliasing errors has been exam-
ined. A Fourier analysis using an effective wavenumber shows that the skew-symmetric form of the
convective term results in a reduced amplitude of the aliasing errors compared to the conservative
and nonconservative forms. The three formulations of the convective term were tested for Burgers’
equation. It was found that in some cases the nonconservative form gives the lowest total error rather
than the skew-symmetric form. However, a detailed Fourier analysis of the convective term shows that
the behavior of the formulations is dependent on the phase relationships of the Fourier coefficients of
the solution. and that the skew-symmetric form gives the most robust results of the three. The three
formulations were tested in the large-eddy simulation of decaying compressible isotropic turbulence.
and it was found that the skew-symmetric form gives the most accurate results, consistent with the
error analysis.
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Introduction

In the past few vears, there has been a resurgence of interest in performing large-eddy
simulations (LES) of flows of engineering interest. There are two roles for LES to play in
the computation of complex turbulent flows. First. LES can be used to study the physics of
turbulence at higher Reynolds numbers than can currently be achieved with direct numerical
simulation (DNS) and LES can aid in the testing and improvement of lower order engineering
turbulence models. Second, it is hoped that LES can be used in the near future as an
engineering tool rather than as a research tool. Although it will remain an expensive tool,
it might be the only means of accurately computing complex flows for which lower order
models fail.

The majority of LES reported in the literature involve incompressible fluid flows that are
homogeneous in at least two spatial directions. While computation of such flows has greatly
contributed to the development of LES, the computation of more complex flows is required.
In this paper, the method is applied to a spatially-developing compressible boundary layer
Aow. Several issues related to the effect of the numerical scheme on the simulations are
investigated. A high-order, upwind biased, implicit, finite difference scheme is emploved in
the simulations and subgrid-scale (SGS) modeling is performed using the dyvnamic model.

Mathematical Formulation

[n large-eddy simulation (LES) one computes explicitly only the motion of the large-scale
structures. The nonlinear interactions with the small-scales are not resolved by the numerical
grid and are modeled. The governing equations for the large eddies in compressible flows
are obtained after filtering the continuity. momentum, and energy equations and recasting
in terms of Favre averages. The filtering operation (denoted by an overbar) maintains only
the large-scales and can be written in terms of a convolution integral.

3
flzy, 22, 23) = /D H Gz — i) flah, 2y 2y )deydalyday . (1)
- i=1

1



where f is a turbulent field, G; is some spatial filter that operates in the i-th direction and
has a filter width. A; (usually equal to the computational grid spacing in that direction) and
D is the flow domain.

The resulting equations of motion for the large eddies are as follows:

o5 () _ |
at * aiL‘,‘ =0 ’ (2)
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(4)

The effects of the small-scales are present in the above equations through the SGS stress
tensor and the SGS heat flux,

T = Py — ill;) (5)
g =7 (Wl —uT) (6)

respectively, and require modeling. A tilde is used to denote Favre averages (f = pf /D).
Also, p is the density, T is the temperature, u; is the velocity component in the i-direction
and k is the thermal conductivity. The specific heats at constant volume, C,, and at constant
pressure, C,, are assumed in this study to be constant. The large-scale molecular viscosity,
[i. is assumed to obey Sutherland’s law,

~ =32 5 |
ﬁ_ _ (l) ¥ 0 + e ( )
Ho To T+T.°
with a Sutherland constant f’e = 198.6° R. The large-scale pressure, p, is obtained from the
filtered equation of state,

-1

p=pRT . (8)

The molecular Prandtl number, Pr, is assumed to be 0.718. Note, that in deriving Eqgs. (2)-
(4), the viscous, pressure-dilatation and conduction terms were approximated in a similar
fashion as by Erlebacher et al.! For example. the pressure dilatation term is approximated
as follows:

) 7 o o w0 o7
dui _ ppOui _ _pr Ot Jpg 0 Sp (pOui O GO
Pa‘l N pRTdCLl pRT&)zi pRTOI, ” pR (Td’ll, Tal‘l) o pal‘,‘ ) (9)

In the above. the small-scale temperature dilatation terms in the parentheses are neglected.
since they are expected to have a small influence on the large-scales compared to the SGS
heat flux. ¢;. and also because they are very difficult to model. 2!+

Subgrid-Scale Modeling
The dynamic SGS modeling concept was introduced by Germano et al.* for LES of

incompressible flows and has attracted a lot of attention in the LES community during the

2



recent years. Moin et al® extented the dynamic model to compressible flows and Lilly®
suggested a refinement to both models that is now largely employed. Since then. further
refinements to the model have been proposed (Wong,® Ghosal et al.,” Piomelli et al®).

The model for the deviatoric and isotropic parts of the SGS stress tensor is based on
Smagorinski’s® and Yoshizawa’s'® eddy-viscosity models, respectively. The model constants.
however, are allowed to vary in space and time, and are computed dynamically. as the
simulation progresses, from the energy content of the smallest of the resolved large-scales.
This approach of calculating the model constants has been found to substantially improve the
accuracy and robustness of the LES method, since the model constants adjust dynamically
to the local structure of the flow and do not have to be specified a priori. In addition.
‘t has been found from incompressible flow simulations, that the dynamic model provides
the correct limiting behavior near solid boundaries, and adjusts properly by itself in the
transitional or laminar regimes. Although it can not predict properly backscatter. it allows
for some reverse energy cascade. A similar approach is followed for the SGS heat flux.

Dynamic modeling is accomplished with the aid of a second filter (referred to as the test
filter, @) that has a filter width A; in the i-th direction, that is coarser than the grid used
to perform the computations (11 > Ag).

The model parameterization for the SGS stress and the SGS heat flux is given by

1 ~ 1~
T — §Tkk6ij = =2 (bgj — gSkkéiJ) . (10)
Tk = 20]5A2|§‘2 ) (11)
aT
oz )
q t(?lf,' (12)

where gt = CAIS|, ke = pe/ Pre, Sy = 0.5 (9/0x; + 01/ dzy), 5] = (QS'US"U)”Q, and
A = (AzAyAz)>.
The model coefficients are computed from
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where ~ denotes test-filtered quantities, A = (AlAgAg) (2 is the width of the test filter
in the ith direction), < > denotes averaging over the homogeneous spanwise direction. and
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In the simulations, negative values for the eddy viscosity, g, and eddy conductivity, k..
were allowed, as long as the total viscosity (pr = fi + ) and the total thermal conductivity
(kr = k + k;) were non-negative. In terms, this restricts the amount of energy back-scatter
allowed. but avoids numerical instabilities due to anti-dissipation. A three-point top-hat
filter (derived using the trapezoidal integration rule) was employed for the test filtering.

Numerical Method

The DNS code of Rai et al.}* was modified to perform LES using the dynamic model. The
DNS code solves the Navier-Stokes equations in non-conservative form. Since the problem
considered here does not exhibit discontinuities, the same approach was taken in the LES to
solve Egs. (2)-(4). Spatial derivatives are computed using fifth-order-accurate upwind-biased
differences for the convective terms and fourth-order-accurate central differences for the
viscous terms. Fourth-order-accurate central differences are also used to compute the spatial
derivatives in the dynamic model. Time advancement is performed using an iterative fully
implicit second-order-accurate scheme.'? Such schemes are unconditionally stable and allow
for accurate advancement using much larger time steps than explicit schemes. However, they
are more CPU intensive. since they involve the solution of a system of algebraic equations.
In addition, upwind schemes are much more stable than central difference schemes, since
they provide implicitly some artificial dissipation (this controls also aliasing errors).

Reference Case and Calculation Set-up

The experimental configuration of Shutts et al.}3 was chosen as a test case. It is that of
a zero-pressure gradient. flat-plate boundary layer flow at M = 2.25. The Revnolds number
based on inlet conditions is 635000/in. The adiabatic wall temperature is 380°R and the
temperature at the freestream is 305° R.

The size of the computational domain and the type of boundary conditions are chosen
the same as in the DNS.!! for consistency. The computational domain is divided along the
streamivise direction in three regions. The first region is 2.5in. long and contains the regions
of blowing and suction. as well as transition. The second region has uniform spacing in X.
is 2in. long, and contains the turbulent region. The third region is 6in. long and gradually
becomes very coarse to artificially damp the turbulent fluctuations and ensure that the outlet
boundary will be non-reflective. The domain is 0.35in. wide in the span. and 3in. tall along
the wall-normal direction.

Periodic blowing and suction is imposed on the flat plate. at a distance of 0.5in. from
the inlet. to trip the incoming flow to turbulence. The wall-normal velocity at the plate in
this region is as follows:

v = Au fl2)giz)h(t). (20)



where
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and lr = 10, Mpar = 5, T, = 4.5in., z, = 5in., A = 0.04 is the disturbance amplitude.
3 = 75000Hz, ¢, & are random numbers (between 0 and 1), and zmer = 0.35in.

A no-slip boundary condition, together with an adiabatic wall temperature condition, 1s
imposed on the rest of the flat plate. The conditions at the inflow and outflow boundaries are
supersonic, except for the subsonic portion of the boundary layer. At the inflow boundary,
the dependent variables are fixed based on results from a laminar boundary layer analysis.
A non-reflecting boundary condition is specified at the outflow boundary, as was mentioned
above. Periodic boundary conditions are used in the homogeneous spanwise direction. The
computational domain is chosen such that it is long enough along the span to ensure that the
flow is homogeneous in this direction. Finally, a symmetry boundary condition is imposed
at the upper boundary, which is located well outside the boundary layer.

Preliminary Results

A number of simulations were conducted to examine several issues regarding the accuracy
of the LES method in computing spatially evolving compressible boundary layer flows using
finite difference schemes. The cases considered are summarized in Table 1.

Shown in figure 1 is the variation of the computed skin-friction coefficient, C';. along the
streamwise direction from simulations conducted at several different grid resolutions. The
results are compared against the experimental data, the turbulent correlation of White and
Christoff,'* and the data from a marginally resolved DNS.1'  As the grid was refined the
accuracy of the LES results improved. Case 2 uses 1/16 the number of grid points used in
the DNS. This coarse grid simulation clearly under-predicts the skin friction. and appears to
be at a much lower turbulence level close to the end of the well resolved region (x=8.8in.)
When the grid was refined (case 3) the results improved. The number of grid points along the
spanwise direction was finally doubled (case 4) to capture better the large-scale structures.
That simulation employed 1/3 the number of grid points used in the DNS.

The variation of the Van Driest velocity (normalized by the shear stress at the wall) with
the normal distance from the wall at x=8.8in. is shown in figure 2. Refining the grid again
improved the agreement with the compressible law of the wall. Although the grid used 1n
case 4 is only about a factor of 3 coarser than the DNS, there seems to still be room for
improvement in accuracy.

The skin-friction distribution from simulations performed at higher disturbance levels
(cases 5) is shown in figure 3. As expected, the location of transition is moved further
upstream as the disturbance amplitude is gradually increased. However. no difference on
C'; are observed at x=3.3in.. indicating that the flow there is fully turbulent. Therefore.
the differences seen in the LES in figures 1 and 2. are not due to any end stage (by-pass)
transition phenomena.



The effect of the numerical method was examined by employing a lower order accurate
scheme in the simulations. The convective terms were computed using third-order upwind
differences. Second-order central differences were used in computing the diffusion terms
and the derivatives in the dynamic model. A significant drop in the computed skin-friction
coefficient was found when the lower order scheme was employed, as is shown for cases 7 and
8 in figure 4. This figure also shows that the lower order scheme required about 2.65 times
more grid points to match the results of the higher-order scheme.

The final paper will contain comparisons of other boundary-layer statistics, such as pro-
files of turbulence intensities. In brief, they have been found to compare similarly to the
above results.

Overall. the poor performance of the LES is believed to be mainly due to the truncation
errors from the upwind scheme, rather than due to the dynamic SGS model. These errors
artificially damp the turbulence of the smaller resolved scales. Subgrid scales contain less
energy than the grid scales. As a result, even accurate modeling of subgrid scales will not
overcome the errors due to the finite difference scheme. Furthermore, since the dynamic
model predicts the eddy viscosity and eddy conductivity based on the turbulence level of the
smallest resolved scales, it provides insufficient amounts of turbulent transport. Since the
highly accurate spectral methods are not appropriate for use in complex flows, a possible
solution to the problem would be to maintain only the information on the grid scales that
are accuratelv resolved by a finite difference type scheme, while modeling the effects of the
scales that are omited (including, of course, the subgrid scales). This approach. however.
will substantially increase the cost of the simulation, since it would require explicit filtering
of the contaminated modes at each time step using a high-order digital filter. and the use of
finer grids to ensure that the remaining resolved scales adequately represent the large-eddies.

Conclusions

A number of issues involved in the LES of a spatially evolving compressible boundary
lavers are examined by conducting simulations using a high-order-accurate finite difference
scheme and the dynamic SGS model. The computational grid was refined successively to
improve the agreement of the computed turbulence statistics with the available experimental
data and results from a marginally resolved DNS. The grids used in the LES were from 16
up to 3 times coarser than the grid used in the DNS. The computational domain was found
to be long enough for the flow to reach a fully-turbulent state and free of transients due
to the periodic blowing and suction mechanism employed to by-pass the natural transition
process.

The results suggest that the finite difference scheme has a direct effect on the effectiveness
of the SGS model influencing greatly the accuracy of the simulations. The use of higher-
order scheme is found to improve substantially the results. since it improves the capture of
the smaller resolved scales. Furthermore, it is recommended to apply the model not only
at the subgrid-scales. but also at the scales that are not properly resolved by the numerical
scheme.
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Table 1: Case parameters

Case Type Grid Size A
1 DNS. 4th order 971 x 55 x 321 0.04
2 LES. 4th order 311 x 35 x 65 0.04
3 LES, 4th order 416 x 55 x 129 0.04
4 LES, 4th order 416 x 53 x 257 0.04
3 LES, 4th order 311 x 55 x 63 0.10
6 LES, 4th order 416 x 55 x 129 0.06
T LES, 2nd order 311 x 55 x 63 0.04
3 LES. 2nd order 416 x 55 x 129 0.04
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Figure 1: Streamwise evolution of the skin friction coefficient: effect of grid size.
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Figure 2: Profiles of Van Driest velocity normalized by wall-shear velocity at x=38.8in.: effect
of grid size.
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Figure 3: Streamwise evolution of the skin friction coefficient; effect of disturbance amplitude.
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